pressure the temperature of the quantal fluid is greater than that of the classical fluid. On the other hand its relative volume V_{1}^{*} / V^{*} is always less, indicating that the compression "squeezes out" some of the quantal inflation of the volume. Unfortunately there are no experimental data to test these conclusions. Some measurements on, say, helium, neon, and argon would be highly desirable.

Table 2
THERMODYNAMIC PROPERTIES OF A QUANTAL LJD FLUID ($\Lambda^{*}=1$) UNDER SHOOK compression, starting from $P^{*}=0, T^{*}=0 \cdot 75, V^{*}=1 \cdot 245$

The symbols are defined in Section II

Pressure	P_{1}^{*}	0	2.964	$7 \cdot 023$	$15 \cdot 12$
Volume	V_{1}^{*}	$1 \cdot 245$ ($=V^{*}$)	1-1314	$1 \cdot 0607$	0.9899
Temperature	T_{1}^{*}	$0 \cdot 75$	$0 \cdot 979$	1.221	1.671
Energy	E_{1}^{*}	$-4 \cdot 115$	-3.946	-3.468	$-2 \cdot 185$
Specific heat	$\left(C_{V}^{*}\right)_{1}$	$2 \cdot 480$	2.589	$2 \cdot 650$	$2 \cdot 689$
Shock velocity	U_{1}^{*}	$4 \cdot 58$	$6 \cdot 36$	$7 \cdot 68$	$9 \cdot 58$
Flow velocity	w_{1}^{*}	0	$0 \cdot 581$	$1 \cdot 138$	1.964
Velocity of sound	u_{1}^{*}	$4 \cdot 58$	6.85	$8 \cdot 26$	$11 \cdot 51$

(c) Conditions after Adiabatic Expansion from a Shocked State

Section III (d) described a method for arriving at conditions during the adiabatic expansion of a shock-compressed material. Our results for LJD fluids are shown as dotted curves in a P^{*} / V^{*} plot in Figure 3 and in a P^{*} / w^{*} plot in Figure 4. We have worked out a number of thermodynamic properties along the adiabats but there is no need to give the results here. It is sufficient to point out that the adiabats in Figure 3 intersect the zero-pressure line at considerably larger volumes and at higher temperatures than those at which the shock compression began. The highest adiabat only approaches the line at very large volumes, indicating that the liquid is partially vaporized in the final state.

In Figure 4 the adiabats are represented by the right-hand sections of the dotted curves crossing the original Hugoniot. It will be seen that the adiabatic expansion of a shocked fluid from $P_{1}^{*}=123 \cdot 7$ to $P_{2}^{*}=0$ increases the flow velocity from $w_{1}^{*}=6 \cdot 51$ to $w_{1}^{*}+w_{2}^{*}=13 \cdot 69$.

Of course expansion into a vacuum ($P_{2}^{*}=0$) seldom occurs in practice : in most experimental work the shocked material expands into the surrounding air. We can determine the surface conditions here by the method outlined in the last paragraph of Section III (d). If we suppose that the LJD liquid is argon and assume that it is (hypothetically) thermally insulated from air at $25^{\circ} \mathrm{C}$ and 1 atm , we find that the conditions of the argon at the starting point in Figure 4 are $P \approx 1 \mathrm{~atm}, \hat{V}=0.633 \mathrm{~cm}^{3} / \mathrm{g}, T=90^{\circ} \mathrm{K}$ and in the shocked state at the point A are $P_{1}=51000 \mathrm{~atm}, \hat{V}_{1}=0.425 \mathrm{~cm}^{3} / \mathrm{g}, T_{1}=860^{\circ} \mathrm{K}, w_{1}=1029 \mathrm{~m} / \mathrm{sec}$. The final conditions, given by the point of intersection of the expansion adiabat with the compression Hugoniot for air are $P_{2}=69 \mathrm{~atm}, \hat{V}_{2}=0.926 \mathrm{~cm}^{3} / \mathrm{g}, T_{2}=144{ }^{\circ} \mathrm{K}$,

Fig. 3.-Hugoniot curves for normal and precompressed LJD liquids starting from $T^{*}=0.75$. The starting pressures are (a) $P^{*}=0$; (b) $P^{*}=2 \cdot 041$; (c) $P^{*}=15 \cdot 15$. The dotted curves are those for adiabatic expansion from shocked states on the Hugoniot curve (a).

Fig. 4.-A pressure/flow-velocity diagram illustrating the interaction of forward-going shock waves 1 with backward-going shocks or rarefactions 2. The primary shocks 1 are based on the starting point $P^{*}=0, T^{*}=0 \cdot 75$.

